Tác giả: Iain A M Hennessey & Alan G JappChuyên ngành: Hóa sinhNhà xuất bản:Nhóm biên dịch: ĐỖ TIẾN SƠN & TRẦN HOÀNG LONGNăm xuất bản:2016Trạng thái:Chờ xét duyệtQuyền truy cập: Cộng đồng

Diễn giải khí máu động mạch

TRAO ĐỔI KHÍ Ở PHỔI: ĐẠI CƯƠNG

Tế bào sử dụng oxy (O2) để sản sinh năng lượng và thải ra carbon dioxid (CO2). Dòng máu cung cấp oxy cho tế bào và lấy đi CO2. Quá trình này phụ thuộc vào khả năng bão hòa oxy trong máu và khả năng tách CO2 khỏi máu tại phổi. 

Quá trình trao đổi khí ở phổi là quá trình chuyển O2 từ khí quyển vào dòng máu (quá trình oxy hóa) và chuyển CO2 từ dòng máu thải ra môi trường (thải CO2).Bạn đang xem: Paco2 là gì

Quá trình này xảy ra giữa các phế nang chứa khí và các mao mạch gọi là mao quản. Nhờ cấu trúc siêu mỏng và trao đổi cực gần (màng trao đổi phế nang – mao quản) mà CO2 và O2 có thể khuếch tán qua lại. (Hình 1).

Bạn đang xem: Paco2 là gì


*

Hình 1: Giải phẫu hệ hô hấp.

TRAO ĐỔI KHÍ Ở PHỔI: CÁC ÁP SUẤT RIÊNG PHẦN

Kết quả phân tích khí máu động mạch giúp bác sĩ đánh giá hiệu quả trao đổi khí thông qua các số đo áp suất riêng phần của O2 và CO2 trong máu động mạch (PaO2 và PaCO2).

Áp suất riêng phần mô tả sự đóng góp của một loại khí trong hỗn hợp khí (ví dụ: không khí) đến áp suất toàn phần. Khi khí khuếch tán vào dịch (như là máu), lượng khí khuếch tán nhiều hay ít phụ thuộc vào áp suất riêng phần này. 

Chú ý hai kí hiệu sau:

PO2 = Áp suất riêng phần của oxy (partial pressure of O2)

PaO2 = Áp suất riêng phần của oxy trong máu động mạch (partial pressure of O2 in arterial blood)

Tất cả các khí khuếch tán từ nơi có áp suất riêng phần cao đến nơi có áp suất thấp. Ở màng trao đổi phế nang – mao quản, không khí trong phế nang có PO2 cao hơn và PCO2 thấp hơn trong máu mao mạch. Do đó, các phân tử O2 đi từ phế nang khuếch tán sang máu và các phân tử CO2 thì khuếch tán ngược lại cho đến khi các áp suất riêng phần cân bằng. 

Chú ý về các áp lực khí  

Ở ngang mực nước biển, áp suất khí quyển (tổng áp lực của các khí trong khí quyển) = 101 kPa = 760 mmHg. atmosphere) = 101 kPa or 760 mmHg.

O2 chiếm 21% trong không khí, vậy áp lực riêng phần của O2 là:

= 21% áp suất khí quyển

= 21 kPa = 160 mmHg

CO2 chiếm tỉ lệ rất nhỏ trong khí trời, do vậy, áp suất riêng phần của CO2 trong khí hít vào là không đáng kể.

KHỬ CARBON DIOXIDE 

CO2 khuếch tán từ dòng máu vào phế nang với hiệu suất cao, do đó quá trình khử CO2 trên thực tế bị giới hạn bởi tốc độ “xả” CO2 trong phế nang. Do đó, chỉ số PaCO2 (chỉ số phản ánh gián tiếp toàn bộ lượng CO2 trong máu động mạch) phụ thuộc vào thông khí phế nang – tổng thể tích không khí vận chuyển giữa phế nang và không khí ngoài môi trường trong mỗi phút.

Quá trình thông khí được điều khiển bởi một trung khu thuộc thân não gọi là trung khu hô hấp. Trung khu này chứa các thụ cảm thể hóa học đặc hiệu nhạy cảm với PaCO2 và liên kết với các cơ hô hấp. Khi xảy ra bất thường, trung khu hô hấp sẽ điều chỉnh tần số thở và cường độ thở cho phù hợp (Hình 2).

Bình thường, phổi có thể duy trì mức PaCO2 bình thường ngay cả trong các trường hợp xảy ra quá trình sinh CO2 tăng bất thường (như trong nhiễm khuẩn huyết). Do đó, khi đã có tăng PaCO2 máu (hypercapnia – tăng CO2 máu) gần như luôn luôn hướng đến tình trạng giảm thông khí phế nang.

Ghi nhớ

PaCO2 phụ thuộc vào quá trình thông khí. Mức độ thông khí được điều chỉnh để duy trì PaCO2 trong giới hạn chặt chẽ.


*

Hình 2: Cơ chế điều hòa thông khí.

Lưu ý về thụ cảm thể giảm oxy máu (hypoxic drive)

Ở những bệnh nhân có tình trạng tăng PaCO2 kéo dài (tăng CO2 máu mạn tính), các thụ cảm thể đặc hiệu ngưỡng CO2 dần mất nhạy cảm. Cơ thể khi đó phụ thuộc vào các thụ cảm thể đặc hiệu PaO2 để đo mức thông khí. Khi đó, PaO2 thấp trở thành tác nhân chính kích thích thông khí. Đây được gọi là kích thích giảm oxy máu (hypoxic drive).

Với cơ chế đó, ở nhóm bệnh nhân phụ thuộc thụ cảm thể giảm oxy máu, việc điều chỉnh tình trạng thiếu oxy quá tích cực, kèm theo thở oxy hỗ trợ, có thể làm giảm thông khí, dẫn đến tăng kịch phát PaCO2. Vì thế, bệnh nhân có tình trạng tăng CO2 máu mạn tính phải được bổ sung oxy kiểm soát, kết hợp với theo dõi khí máu cẩn thận. 

Chỉ dẫn này không áp dụng trên bệnh nhân có tăng CO2 máu cấp tính.

ĐỘ BÃO HÒA OXY CỦA HEMOGLOBIN (SO2)

Quá trình oxy hóa phức tạp hơn quá trình khử CO2. Điều đầu tiên chúng ta nhận thấy: PO2 thực ra không cho ta biết có bao nhiêu O2 ở trong máu. PO2 chỉ là số đo lượng phân tử O2 tự do, không liên kết trong máu – mà lượng này chỉ chiếm rất ít trong toàn phần.

Thực tế, phần lớn phân tử oxy trong máu được gắn với protein haemoglobin (Hb; Hình 3). Bởi vậy, lượng oxy trong máu phụ thuộc vào hai yếu tố sau:

Nồng độ Hb: Chỉ số này biểu thị lượng oxy mà máu có đủ tải trọng để mang theo.

Độ bão hòa của Hb với O2 (SO2): Chỉ số này là phần trăm điểm gắn khả dụng của Hb đã được gắn một phân tử O2, nói cách khác là tải trọng oxy đang được sử dụng. (Hình 4).

Chú ý:

SO2 = O2 bão hòa trong bất kì mẫu máu nào. SaO2 = O2 bão hòa trong máu động mạch.

Lưu ý về máy đo phân áp oxy mạch (mà ta vẫn gọi là máy đo SpO2)

SaO2 có thể đo bằng dụng cụ kẹp ngón tay hay dái tai của bệnh nhân. Trong đa số trường hợp, máy cung cấp thông tin đầy đủ về tình trạng oxy, nhưng khi các chỉ số bão hòa dưới 75%, máy sẽ đo kém chính xác. Khi tuần hoàn ngoại vi giảm, số đo máy cung cấp sẽ không đáng tin cậy. Máy đo SpO2 cũng không đo được PaCO2, do đó, không được sử dụng để thay thế kết quả khí máu động mạch ở ca bệnh có giảm thông khí. 

Ghi nhớ

PO2 không phản ánh được lượng oxy có trong máu. SaO2 và nồng độ Hb mới phản ánh lượng oxy có trong máu động mạch.


*

*

Hình 4: Quá trình bão hòa oxy với hemoglobin.

BIỂU ĐỒ PHÂN LY OXYHEMOGLOBIN

Giờ chúng ta đã rõ: lượng oxy trong máu phụ thuộc vào nồng độ Hb và SO2. Vậy PO2 có ý nghĩa gì?

PO2 có thể hiểu là yếu tố thúc đẩy phân tử O2 gắn với Hb. Hay nói gọn lại là: PO2 quyết định SO2. Đường cong biểu thị phân ly oxyhemoglobin (Hình 5) cho thấy với mỗi PO2 sẽ có một giá trị SO2 tương ứng.

Nhìn chung, PO2 càng cao thì SO2 càng cao, nhưng cung này không phải là một đường thẳng tuyến tính. Đoạn màu xanh của đồ thị như là một vùng “bình nguyên cỏ xanh”, khi mà trên ngưỡng này, sự thay đổi của PO2 chỉ ảnh hưởng chút ít lên SO2. Trái lại, ở vùng “dốc màu đỏ”, chỉ cần một thay đổi nhỏ của PO2 sẽ gây ảnh hưởng lớn đến SO2.

Nhớ rằng: với một PaO2 “bình thường” ở khoảng 100mmHg, Hb gần như sẽ ở mức bão hòa tối đa (trên 95%). Điều đó có nghĩa là máu đã dùng hết tải lượng oxy và PaO2 dù có tăng thêm cũng không tăng thêm lượng O2 trong động mạch.

Ghi nhớ

PO2 không phải lượng O2 trong máu, nhưng là động lực thúc đẩy quá trình bão hòa oxy của Hb.


*

Hình 5: Cung biểu thị phân ly oxyhemoglobin. Đường cong biểu hiện mối quan hệ giữa PO2 và tỉ lệ bão hòa hemoglobin với oxy. Ghi chú cho đồ thị dạng sigma: gần như phẳng khi PO2 trên 80mmHg nhưng PO2 giảm dưới 60mmHg thì đồ thị đổ dốc. 2,3-DPG: 2,3 – diphosphoglycerate.

Ghi nhớ:

Khi Hb đã gần đạt mức bão hòa O2 tối đa thì tăng thêm PO2 cũng không làm thay đổi lượng O2 trong máu.

THÔNG KHÍ PHẾ NANG VÀ PaO2

Ta đã hiểu PaO2 ảnh hưởng đến SaO2 như thế nào. Nhưng yếu tố nào xác định PaO2?

Ba yếu tố chính ảnh hưởng đến PaO2 là:

Thông khí phế nang

Tương xứng giữa thông khí và tưới máu (V˙/Q˙ )

Nồng độ Oxy trong khí hít vào (FiO2)

Thông khí phế nang

O2 khuếch tán rất nhanh từ phế nang vào dòng máu – vì thế PO2 của phế nang càng cao, thì PaO2 càng cao.

Khác với khí trong khí quyển, khí trong phế nang chứa một lượng đáng kể CO2 (Hình 6). Nhiều CO2 hơn đồng nghĩa với PO2 thấp hơn (nhớ lại là: áp suất riêng phần của một khí phản ánh tỉ lệ của khí đó trong thể tích toàn phần).

Tăng thông khí phế nang cho phép ‘xả’ ra nhiều CO2 hơn, kết quả là PO2 của phế nang sẽ cao hơn. Và nếu giảm thông khí thì ngược lại, CO2 sẽ ùn ứ khi O2 tiêu hao, dẫn đến PO2 phế nang tụt giảm.

Trong khi tăng thông khí (hyperventilation) chỉ có thể tăng PO2 phế nang một chút (đưa lên gần với mức PO2 của khí hít vào), thì PO2 phế nang và cả PaO2 có thể tụt thấp không giới hạn nếu thông khí kém hiệu quả.


Hình 6: Thành phần của khí hít vào và thở ra ở các thì thở.

Ghi nhớ

Cả hai quá trình trao đổi khí đều phụ thuộc vào thông khí phế nang: thông khí không thỏa đáng sẽ gây tụt PaO2 và tăng PaCO2. 

Bất tương xứng thông khí/tưới máu và hiện tượng shunt

Không phải lúc nào dòng máu chảy qua phổi cũng gặp được phế nang được thông khí tốt và cũng không phải tất cả các phế nang thông khí được tưới máu. Tình trạng này được gọi là bất tương xứng thông khí/ tưới máu (V˙ /Q˙ ).

Hãy tưởng tượng có một khu vực của phổi mà phế nang thông khí kém (ví dụ do xẹp phổi hoặc đông đặc). Máu qua những phế nang này trở về tuần hoàn động mạch với lượng O2 ít hơn và CO2 cao hơn bình thường. Hiện tượng này gọi là shunt1 (Hình 7). Có thể hiểu là hiện tượng một lượng máu qua phổi không được oxy hóa.

Bây giờ, với đáp ứng tăng thông khí phổi, ta có thể đẩy thêm nhiều hơn khí ra vào các ‘phế nang tốt’ còn lại. Đáp ứng này cho phép phế nang xả thêm CO2, vì thế dòng máu chảy qua những phế nang này thải trừ thêm nhiều CO2. Nồng độ CO2 thấp hơn ở máu không shunt bù trừ cho nồng độ CO2 cao ở dòng máu shunt, từ đó duy trì PaCO2. 

Nhưng quá trình oxy hóa thì KHÔNG như vậy. Dòng máu chạy qua các ‘phế nang tốt’ không còn khả năng mang thêm O2 nữa vì Hb trong máu đã bão hòa tối đa (cho dù có tăng thông khí) (hãy nhớ lại “bình nguyên cỏ xanh”, Hình 5). Không bù trừ được dẫn đến PaO2 tụt giảm.

Ghi nhớ

Bất tương xứng thông khí/ tưới máu khiến máu nghèo oxy trở lại tuần hoàn động mạch, do đó làm giảm PaO2 và SaO2.

Miễn là thông khí phế nang toàn bộ vẫn được duy trì, thì bất tương xứng này KHÔNG gây tăng PaCO2 (do bù trừ được).

1Thuật ngữ này cũng được áp dụng để mô tả các cầu mạch máu/ phế nang (shunt giải phẫu).

Xem thêm: Chuyển File Pdf Sang Word Sinhvienit, Phần Mềm Chuyển Đổi Pdf Sang Word


Hình 7: Ảnh hưởng của shunt lên nồng độ oxy và carbon dioxid.

FiO2 và quá trình oxy hóa

Tỉ lệ oxy cung cấp (FiO2) đại diện cho phần trăm oxy trong khí hít vào. Ở điều kiện khí trời (room air), FiO2 là 21%, nhưng có thể tăng bằng liệu pháp oxy hỗ trợ. 

PaO2 thấp có thể là hậu quả của bất tương xứng thông khí/ tưới máu hoặc thông khí không thỏa đáng, và trong cả hai trường hợp, tăng FiO2 sẽ cải thiện PaO2. Yêu cầu FiO2 cụ thể rất khác nhau, tùy thuộc vào mức độ nặng nề của suy giảm oxy hóa, từ đó giúp thầy thuốc lựa chọn thiết bị cung cấp oxy phù hợp (Hình 8). Khi nguyên nhân là thông khí kém, phải nhớ là tăng FiO2 sẽ không cải thiện được tình trạng tăng PaCO2. 

Thở oxy hỗ trợ làm kết quả khí máu phức tạp hơn, khi sẽ khó để nhận định liệu PaO2 có cao phù hợp với FiO2 . Vì thế, liệu có suy giảm oxy hóa hay không? Một nguyên tắc đơn giản mà dễ áp dụng, đó là nếu bình thường, FiO2 và PaO2 chênh nhau không quá 75mmHg. Tuy nhiên, thường có một tỉ lệ sai số FiO2, nếu nghi ngờ, nên chỉ định làm lại xét nghiệm khí máu ở điều kiện khí trời (không oxy hỗ trợ). 

Các thiết bị cung cấp oxy

Gọng mũi (kính): FiO2 2 không đặc hiệu: phụ thuộc vào tốc độ (1–6 L/phút) và thông khí phế nang.

Thở qua mask thường: FiO2 30–50% ở tốc độ 6–10 L/phút nhưng không chính xác. Có thể gây ứ CO2 ở tốc độ dưới 5L/phút, vì vậy, không dùng khi cung cấp FiO2 thấp hơn. 

Mask hiệu suất cố định (lưu lượng dòng cao): FiO2 24–60%. Cung cấp oxy cố định, biết trước. Lý tưởng cho giải pháp có kiểm soát, oxy liệu pháp chính xác ở nồng độ thấp.

Mask có túi dự trữ: FiO2 60–80%. Có thể đạt tới mức FiO2 cao hơn với mặt nạ ôm khít. Áp dụng ngắn hạn trong cấp cứu hô hấp.

Đặt nội khí quản: FiO2 21–100%. Được sử dụng với các bệnh nhân nặng, diễn biến xấu, với yêu cầu O2 rất cao, đặc biệt là bệnh nhân suy hô hấp.

Người bệnh phải được dùng an thần, giãn cơ hô hấp và thở máy.


Hình 8 Các thiết bị cung cấp oxy.

RỐI LOẠN TRONG TRAO ĐỔI KHÍ

THIẾU OXY MÔ, THIẾU OXY MÁU VÀ SUY GIẢM OXY HÓA

Thuật ngữ tiếng Anh tương ứng: hypoxia, hypoxaemia và impaired oxygenation.

Thiếu oxy mô (hypoxia) là trạng thái mô không được cung cấp oxy đầy đủ để chuyển hóa hiếu khí 1 (Hình 9). Đây có thể là hậu quả của thiếu oxy trong máu (sẽ được trình bày tiếp theo đây) hoặc tình trạng thiếu máu đến mô hay nhồi máu. Tình trạng này thường đi kèm với chuyển hóa acid lactic khi tế bào thích nghi bằng chuyển hóa yếm khí. 

Thiếu oxy máu (hypoxaemia) là trạng thái giảm lượng oxy có trong máu động mạch. Đây có thể là hậu quả của giảm oxy hóa (sẽ được trình bày tiếp theo đây), hemoglobin thấp (thiếu máu) hoặc giảm ái lực giữa hemoglobin với oxy (gặp trong ngộ độc khí CO).

Suy giảm oxy hóa (impaired oxygenation) là trạng thái giảm oxy máu do vận chuyển oxy từ phổi vào máu suy yếu. Được xác định khi PaO2 thấp (dưới 80mmHg). 

Điểm quan trọng cần lưu ý đó là sự khác biệt giữa: suy giảm oxy hóa (hậu quả của thiếu oxy máu) và tình trạng oxy hóa không thỏa đáng

(hậu quả của thiếu oxy mô). Ta cùng xét trên một bệnh nhân có PaO2 = 64mmHg. Bệnh nhân này có tình trạng suy giảm oxy hóa, cho thấy có bệnh lý tại phổi. Tuy nhiên, PaO2 của bệnh nhân thường sẽ đưa đến chỉ số SaO2 trên 90%. Miễn là hemoglobin và cung lượng tim bình thường, thì mô sẽ được cấp đủ oxy.


Hình 9: Nguyên nhân gây ra thiếu oxy mô.

SUY GIẢM HÔ HẤP TYPE 1

Suy giảm hô hấp type 12 được định nghĩa là tình trạng PaO2 thấp với chỉ số PaCO2 bình thường hoặc giảm. Những thông số này gợi ý đến khiếm khuyết trong quá trình oxy hóa dù thông khí vẫn đảm bảo tốt. Nguyên nhân thường do bất tương xứng thông khí/ tưới máu và là hậu quả của nhiều nguyên nhân (Box 1.3.1). PaCO2 thường thấp do cơ thể tăng thông khí bù trừ.

Nếu bệnh nhân đang được thở O2 hỗ trợ (FiO2 cao), chỉ số PaO2 trong khí máu động mạch có thể KHÔNG thấp hơn giới hạn bình thường, nhưng sẽ thấp ở mức không phù hợp với FiO2 khí cung cấp.

Độ nặng của suy giảm hô hấp type 1 được đánh giá dựa vào mức thiếu oxy máu, và cuối cùng là xảy ra thiếu oxy tổ chức (Bảng 1.3.1). Chúng ta lại nhớ lại hình ảnh cung đồ thị phân ly oxy. Giảm PaO2 đến mức 60mmHg ảnh hưởng ít đến SaO2 và có thể bù trừ được. Nhưng vượt ngưỡng này, ta sẽ chạm “dốc đỏ”, tức là nếu giảm PaO2 hơn nữa, sẽ làm giảm mạnh SaO2, giảm đáng kể lượng O2 trong máu.

Điều trị bước đầu ở suy giảm hô hấp type 1 nhằm mục tiêu đạt được mức PaO2 và SaO2 thỏa đáng với oxy hỗ trợ, song song với nỗ lực xử trí nguyên nhân cơ bản. Trong nhiều trường hợp, máy đo SpO2 (pulse oximetry) có thể dùng để theo dõi liên tục bệnh nhân, như một phương án thay thế cho chỉ định khí máu lặp lại nhiều lần. 

2Ở đây, tác giả dùng thuật ngữ Suy giảm hô hấp (impairment) thay vì Suy hô hấp (failure), vì suy hô hấp chỉ được chẩn đoán khi có PaO2 dưới 60mmHg.  Ở nước ta, có nơi sử dụng từ “suy thở”.

Box 1.3.1 :Những nguyên nhân gây suy gi ảm hô hấp thường gặp*

Viêm phổi

Hen cấp tính

Nhồi máu phổi 

Hội chứng suy hô hấp cấp tiến triển (ARDS) 

Tràn khí màng phổi

Viêm xơ phế nang

Phù phổi

Bệnh phổi tắc nghẽn mạn tính (COPD)

* Cơ chế thông thường là bất tương xứng thông khí/ tưới máu; tuy nhiên, trong một số điều kiện (như đáp ứng viêm ở phế nang), mức độ khếch tán của các khí qua màng mao mạch phế nang suy giảm.

 

Bảng 1.3.1 Đánh giá độ nặng của suy giảm hô hấp type 1

 

Nhẹ

Vừa

Nặng

PaO2 (kPa)

8–10.6

5.3–7.9

2 (mmHg)

60–79

40–59

2 (%)

90–94

75–89

2 cao mới duy trì đủ PaO2 

Chuyển hóa acid lactic (dấu hiệu có thiếu oxy tổ chức)

Rối loạn chức năng các cơ quan (lơ mơ, lú lẫn, suy thận, rối loạn huyết động nặng, hôn mê)

SUY GIẢM HÔ HẤP TYPE 2

Suy giảm hô hấp type 2 được định nghĩa là tình trạng PaCO2 cao (tăng CO2 máu), do thông khí phế nang không thỏa đáng. Vì quá trình oxy hóa cũng phụ thuộc vào thông khí, nên PaO2 thường thấp, hoặc bình thường do đã được thở oxy hỗ trợ. Cần chú ý là bất kì nguyên nhân gây suy hô hấp type 1 đều có thể dẫn đến suy hô hấp type 2 nếu suy giảm đột ngột (Box 1.3.2). 

PaCO2 tăng cấp tính dẫn đến tình trạng ứ đọng acid trong máu ( xem Chương 1.4), là nguy hiểm và cần phải đảo ngược. Tăng CO2 máu mạn tính đi kèm với tăng bicarbonat (HCO3-) – chất đệm duy trì cân bằng kiềm toan. Tuy nhiên, bệnh nhân type 2 khi tụt giảm mạnh thông khí cũng tăng vọt PaCO2 (đợt cấp của mạn), dẫn tới tích tụ acid và pH máu giảm thấp (Bảng 1.3.2; Box 1.3.3).

Bổ sung oxy cải thiện tình trạng thiếu oxy máu nhưng không cải thiện tình trạng tăng CO2 máu, và do đó, điều trị suy hô hấp type 2 nên bao gồm các biện pháp để cải thiện thông khí (ví dụ như giảm tắc nghẽn đường thở, thông khí hỗ trợ và đối kháng thuốc an thần). Chính lạm dụng oxy hỗ trợ ở bệnh nhân type 2 này sẽ tiếp tục làm giảm thông khí do vi phạm cơ chế phụ thuộc thụ cảm giảm oxy máu của cơ thể (tr. 7).

Vì máy đo SpO2 không cung cấp thông tin về PaCO2, do đó không được sử dụng ở nhóm bệnh nhân suy giảm hô hấp type 2.

Bảng 1.3.2 Dạng khí máu khác nhau ở bệnh nhân suy hô hấp type 2

 

PaCO2

HCO3

pH

Cấp tính

Mạn tính

Đợt cấp của mạn

 

Box 1.3.2 Nguyên nhân phổ biến gây suy hô hấp type 2

COPD* 

Ngộ độc opiat/benzodiazepin

Suy kiệt

Dị vật đường thở 

Mảng sườn di động

Rối loạn thần kinh cơ

Gù vẹo cột sống

Ngưng thở khi ngủ (OSA)

* COPD gây ra cả suy hô hấp 1 và 2 (có đợt bùng phát).

 

Box 1.3.3 Dấu hiệu lâm sàng của tăng CO2 máu

Lú lẫn

Lơ mơ 

Run vẫy (Flapping tremor)

Mạch nảy

Ấm ngọn chi

Đau đầu

TĂNG THÔNG KHÍ

Tăng thông khí giúp hạ thấp PaCO2 (hạ CO2 máu) và tăng pH tương ứng (xem Chương 1.4). Trong các ca mạn tính, tăng thông khí đi kèm với tăng HCO3 – chất đệm điều chỉnh pH máu. Tần số thở và cường độ thở cũng tăng rõ. PaCO2 giảm nặng có thể dẫn đến ngứa quanh miệng, đầu chi, choáng, ngất.

Tăng thông khí tâm lý thường xảy ra ở các tính huống giả bệnh hoặc cường điệu hóa (dramatic fashion), bệnh nhân thường than phiền khó thở nhiều. Khi đó, bác sĩ sẽ khó khăn phân biệt với các nguyên nhân từ bệnh hô hấp. Khí máu ở trường hợp này sẽ cho PaCO2 thấp và PaO2 bình thường.

Tăng thông khí cũng xảy ra để bù trừ đáp ứng với tình trạng toan chuyển hóa (tăng thông khí thứ phát), được trình bày ở Chương 1.4. Những nguyên nhân khác được liệt kê ở Bảng 1.3.3.

Bảng 1.3.3 Nguyên nhân thường gặp gây tăng thông khí

Nguyên phát

Căng thẳng tâm lý

Giảm oxy máu

Ngộ độc salicylate

Xơ gan

Đau, chấn thương tâm lý

Sốt

Rối loạn thần kinh trung ương

Thứ phát

Toan chuyển hóa (với mọi nguyên nhân)

TÓM TẮT VỀ CÁC RỐI LOẠN TRAO ĐỔI KHÍ

Bốn dạng kết quả khí máu động mạch bất thường trong các rối loạn trao đổi khí được tóm tắt ở Bảng 1.3.4.

Bảng 1.3.4 Dạng kết quả khí máu động mạch bất thường gặp trong các rối loạn trao đổi khí

 

PaO2

PaCO2

HCO3

Suy giảm hô hấp

Type 1

↓/→

Type 2 cấp tính

↓/→

Type 2 mạn tính*

↓/→

Tăng thông khí

↓/→

* Đợt cấp của mạn được xác định khi có ↑ H+ trên bệnh nhân mạn tính.

 

Chú ý về: chênh áp phế nang – máu động mạch

Chênh áp phế nang – máu động mạch (A – a gradient) là sự chênh lệch giữa PO2 phế nang (tính trung bình toàn bộ phế nang) và PO2 trong máu động mạch. Chênh áp này chỉ ra liệu PaO2 có phù hợp với mức thông khí phế nang và vì vậy, chênh áp này là một chỉ số đánh giá mức độ bất tương xứng V/Q.

Trên lâm sàng, công dụng chính của chênh áp A-a là phát hiện tăng nhẹ bất tương xứng V/Q – khi mà PaO2 vẫn trong giới hạn bình thường (như ở tắc mạch phổi) và phát hiện bất tương xứng V/Q ở bệnh nhân suy giảm hô hấp type 2 (phân biệt suy giảm type 2 đơn thuần với suy giảm hô hấp hỗn hợp).

Tính chênh áp phế nang – máu động mạch không bắt buộc phải làm ở phần 2 của cuốn sách (ca lâm sàng), nhưng nếu quan tâm, bạn có thể đọc hướng dẫn ở phần Phụ lục.

CÂN BẰNG KIỀM TOAN: ĐẠI CƯƠNG

Thuật ngữ tính toan tính kiềm dùng để chỉ nồng độ ion hydro tự do (H+) trong dung dịch. Nồng độ H+ có thể được biểu thị trực tiếp dưới dạng nanomol/L hoặc pH (xem trang bên).

Dung dịch với nồng độ H+ cao (pH thấp) có tính acid và dung dịch với H+ thấp (pH cao) có tính base (kiềm). Điểm trung tính (neutral point) là điểm mà một dung dịch chuyển từ kiềm sang toan (pH= 7, H+ = 100 nmol/L).

Một axit giải phóng H+ khi được hòa trong dung dịch. Axit vì thế làm tăng nồng độ H+ trong dung dịch (hay nói cách khác là làm giảm pH). Một base sẽ nhận H+ khi hòa trong dung dịch, vì thế làm giảm H+ tự do (hay nói cách khác: tăng pH). Một chất đệm là chất vừa có thể nhận vừa có thể giải phóng H+ tùy thuộc vào nồng độ H+ xung quanh. Vì thế, hệ đệm có thể chống lại những thay đổi lớn trong nồng độ H+. 

Bình thường, máu có pH vào khoảng 7.35–7.45 (H+ = 35–45 nmol/L) do đó mang tính kiềm nhẹ. Nếu pH máu dưới 7.35, ta có hiện tượng toan máu. Nếu trên giới hạn trên 7.45, ta có hiện tượng kiềm máu. 

Nhiễm toan là bất cứ quá trình nào làm giảm pH máu; nhiễm kiềm là mọi quá trình làm tăng pH máu.

pH là gì?

Chỉ số pH (viết tắt của “power of hydrogen”) là cách đơn giản để thể hiện những thay đổi lớn của nồng độ H+, dù bạn đã biết về nó trước đây, thì dường như chỉ số này sinh ra là để làm ta bối rối!

Chỉ số này là một “logarit âm” (negative logarithmic) (Hình 10). “Âm” tức là pH sẽ giảm khi nồng độ H+ tăng( pH 7.1 sẽ acid hơn pH 7.2). “Logarit” có nghĩa là 1 lần pH biến thiên ứng với 10 lần thay đổi nồng độ H+ (do đó pH=7 sẽ acid gấp 10 dung dịch có pH=8).

Tại sao cân bằng kiềm toan lại quan trọng đến vậy?

Để chuyển hóa tế bào hiệu quả, nồng độ H+ phải được duy trì trong những giới hạn rất hẹp. Thất bại kiểm soát cân bằng pH dẫn đến chuyển hóa tế bào không hiệu quả, cuối cùng dẫn đến tử vong. (Hình 10).

Bài viết liên quan

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *